Impacts of N fertilizer addition to soil C and N dynamics in conventional and organic farming

Fungai N. D. Mukome, Laura Emberson, Martha Sayre, Radomir Schmidt, Kate M. Scow and Sanjai J. Parikh Department of Land, Air and Water Resources, University of California, Davis

systems

Introduction

Soil microaggregates have been implicated as a primary factor for the stabilization of soil carbon in agricultural soils. We hypotheses activities that have an effect on soil microaggregates, such as long term farm management practices, have a considerable effect on soil C and N dynamics. Soils from plots under organic and conventional farming system for 10 years were collected from the Long Term Agricultural Research Station (LTRAS) in Davis, CA.

Objectives

To determine the effect of farming management (conventional vs organic):

- on microaggregates carbon and nitrogen pools, and
- microaggregate formation rates following N fertilizer addition.

Methodology

Rincon silty clay loam Yolo silt loam

collected at LTRAS. 20 samples collected at

X-ray tomography cross-section image of conventional plot microaggregate (0-15cm)

Plots where samples were random from each plot.

Microaggregates

- Higher % C in organic plots
- % C decreases with depth
- Higher % total organic C in the organic microaggregates
- Greater variability with depth for both treatments
- Similar C:N ratios
- Higher % N in organic plots
- % N decreases with depth
- Higher % total organic N in the organic microaggregates
- Greater variability with depth for both treatments

Part I: Plot Characterization

Part I Bulk density, pH and TC, TN, NH₄+ Air Dry moisture Soil collected content from 3 organic 3D mapping and Physical conventional plots microaggregat (0-60cm) Microaggregat isolation TC ,TN, TIC, TIN, TOC, and Chemical characteristics DRIFTS *Total C (TC), total N (TN); total inorganic C (TIC); total inorganic N (TIN); total organic C (TOC);

total organic N (TON) and Diffuse reflectance Fourier transformed infrared spectroscopy (DRIFTS)

Soil treatments: Conventional + no urea (control) Conventional + ¹⁵N urea Organic + no urea (control) Organic + 15N urea N application rate equivalent to 25 lbs/ hectare

Part 2

Soils from the two farming systems (0-30 cm) were used in laboratory microcosms to investigate the effect of added labeled ¹⁵N fertilizer (urea) on soil microaggregate C and N dynamics and composition over a period of 28 days.

Generally higher nitrate levels in organic plots

- Decrease in nitrate concentration with depth
- Considerable variability in concentration among plots of the same treatment

Whole Soil

Greater variability in pH of

conventional plots

Generally pH increased with depth

- Higher ammonia levels in conventional plots
- Decrease in ammonia concentration with depth for conventional plots
- Little variability in concentration of organic plots
- Considerable variability in concentration of conventional plots

Part 2: Incubations

- Differences in microaggregate organic matter composition of two farming treatments
- Controls: Greater reduction in organic matter functional groups in the organic microaggregates (1600-1350 cm⁻¹).
- Urea additions: Greater conservation of organic matter functional groups in organic microaggregates

Next Steps

- Measure greenhouse gas emissions (CO₂ and N₂O) produced during incubation of the microcosms
- Isotopic analysis of N₂O emissions to determine fate of ¹⁵N labeled urea
- Measure potential changes in microaggregate size distribution over incubation period.
- Measure weekly changes in C and N in microaggregates over time of incubation (0- 4 weeks)

Funding was provided by the US Israel Binational Agricultural Research and Development Fund (BARD) IS-4356-10