



Department of LAND, AIR AND WATER RESOURCES University of California, Davis Climate Change • Sustainable Agriculture Environmental Quality • Landscape Processes

# Optimizing Nutrient Management – Tools and Approaches

#### **Daniel Geisseler**

Nutrient Management Specialist, UC Davis

Russell Ranch Field Day, May 21, 2015

## Fertilization guidelines

#### http://apps.cdfa.ca.gov/frep/docs/guidelines.html







## Fertilization guidelines Crop-specific guidelines

#### **Processing Tomatoes Fertilization Guidelines**

Funding provided by:



## Fertilization guidelines

#### http://apps.cdfa.ca.gov/frep/docs/guidelines.html

Developed in collaboration

UNIVERSITY OF CALIFORNIA

Department of

by

#### Fertilization Guidelines for Major Crops Grown in California

These guidelines are based on research results from studies carried out in California and elsewhere. For an optimal fertilization program, site-specific information on soil type, climate and crop management need also to be take in into account.

After choosing a crop from the list below, detailed information can be accessed by moving the mouse over any shape with the symbol (i).







### Fertilization guidelines N uptake and removal rates

#### Crops:

Almonds

Broccoli

Cotton

Lettuce

Pistachio

Strawberries

Tomatoes

Walnut

Wheat

Rice

Grapevines

**Corn for Grain** 

**Corn for Silage** 

#### **Cotton Nitrogen Uptake and Partitioning**

Seasonal N Uptake



Nitrogen Partitioning



Nitrogen uptake of cotton grown in Fresno and Kings County was determined by harvesting the aboveground biomass at different times during cotton development. Cotton plants took up little N until they reached the early square stage. Most N was taken up between the early square and peak bloom stage (Fritschi et al., 2004). Measured immediately before defoliation, more than half of the aboveground N of Accala cotton was in the seeds. Nitrogen in the fiber and burs accounted for about 15% (Fritschi et al., 2004).

#### Nitrogen Removed at Harvest

Cotton yield and N removed at harvest. The N application rate was 150 lbs/acre.

|               | Study                   | Years     | Lint yield | Aboveground N | N in seed and lint | Source                      |
|---------------|-------------------------|-----------|------------|---------------|--------------------|-----------------------------|
|               | location                |           | (Ibs/acre) | (Ibs/acre)    | (Ibs/acre)         |                             |
| Accala Cotton |                         |           |            |               |                    |                             |
|               | Fresno & Kings Counties | 1998-2000 | 1411       | 172           | 106                | Fritschi et al., 2003; 2004 |
| Pima Cotton   |                         |           |            |               |                    |                             |
|               | Fresno County           | 1999-2000 | 1457       | 113           | 83                 | Fritschi et al., 2003; 2004 |



## N uptake curves of field crops

Cotton Defoli-250 ation Peak bloom 005 12 12 12 Accala Early Pima bloom Early square 50 0 0 40 120 160 80 Days after sowing

Corn



Wheat



#### **Tomatoes**





## Early growth challenges

- Early-season N uptake low
- Often high residual soil nitrate concentrations
- Shallow root system
- Optimal conditions for growth need to be provided
- Early conditions affect plant development and yield potential
- ⇒ High risk of nitrate leaching



#### Irrigation management: Early season excess water





#### Irrigation management: Early season excess water





# When adjusting N application rate....





#### Irrigation management: Optimal irrigation timing



1



#### Irrigation management: Optimal irrigation timing





# Optimal timing of water application and sidedress N





## Conclusions

- Irrigation management and N use efficiency are closely linked
- Nitrogen fertilizer should not be applied far in advance of crop uptake
- Residual soil nitrate needs to be taken into account
- If N rate needs to be reduced, make sure that fertilizer N is used efficiently (optimize irrigation and time and mode of fertilizer application first)



# The 6 Rs of N management in irrigated agriculture



