

Phosphorus budgets in four irrigated grain-tomato systems

Department of LAND, AIR AND WATER RESOURCES University of Colifornia, Davis Climate Chees a seatement of Agricultural Colifornia (Chees and Chees) and Colifornia (Chees and Chees) and Colifornia (Chees) and Chees a

Gabriel Maltais-Landry ^{1,4} , Kate Scow ², Emma Torbert ³, and Peter Vitousek ¹ Biology, Stanford University ² LAWR, UC-Davis ³ ASI, UC-Davis, ⁴ gmaltais@stanford.edu

INTRODUCTION

Phosphorus (P) inputs are required to replace soil P removed at harvest and avoid soil P depletion. However, the recovery of P inputs in crops is often low, resulting in inefficient P use. Many factors affect P input requirements and the P budget of a farm, including crop type, input rate and types (manures, composts, fertilizers), and internal recycling (e.g., by cover crops). We computed farm-gate P budgets for four grain-tomato systems to identify the long-term effects of different management practices on P cycling.

METHODS

We computed farm-gate P budgets for four irrigated systems at Russell Ranch between 1993 and 2011:

OCT: Organic corn-tomato, with poultry manure and cover crops;

CCT: Conventional corn-tomato, with mineral fertilizers and without cover crops;

LCT: Mixed corn-tomato, with lower rates of mineral fertilizers than CCT and cover crops;

CWT: Conventional wheat-tomato, with mineral fertilizers and without cover crops.

<u>Inputs</u>: fertilizers, manure, plant seeds, and transplants;

<u>Outputs</u>: crop removal (= yields * P concentration); <u>Cover crops</u>: P uptake and transfer to cash crops; <u>Fluxes ignored</u>: weathering, dust, erosion, runoff, leaching.

P use-efficiency (PUE) = Yield / P inputs P recovery (%) = P uptake / P inputs * 100

RESULTS

• Large P surpluses in OCT vs. P deficits in other systems

125 Outputs Page 25 OCT LCT CCT CWT

<u>Tomato</u>

- Highest inputs in OCT but smaller than grains
- Similar crop removal among systems (higher in OCT)
- P surpluses in all systems (larger in OCT)

Cumulative effects after 18 years

System	Balance	P use-efficiency	P recovery
	kg P ha ⁻¹	kg yield kg⁻¹ P	% inputs
ОСТ	1484	49	19
LCT	-37	350	121
CCT	19	301	97
CWT	-36	357	119

- Large P surplus in OCT vs. roughly balanced in other systems
- 6-7 fold lower PUE in OCT

-25

- Low recovery of P inputs for OCT
- Only CCT avoids over- and under-fertilization

- Cover crop P uptake variable but comparable to fertilizer P inputs and cash crop P removal.
- P transfer to cash crops < 20% of other P fluxes, including P removal in cash crops.

CONCLUSIONS

- Large P surpluses in OCT by using poultry manure to meet crop N requirements;
- Increasing N inputs with N-fixation, urea or feather meal could lower P surpluses in OCT;
- Small deficits in LCT and CWT via insufficient P inputs during the grain phase inputs could increase to reach P balance, similar to CCT;
- Cover crops have a minor but non-negligible contribution to P cycling in these systems.

ACKNOWLEDGEMENTS

We thank I. Herrera and ASI for access to archived samples/data. Funding was partly provided by NSERC and FQRNT fellowships and a NSF DDIG.

