### Soil Microbial Diversity and Abundance at Russell Ranch



Priyashiela Singh psingh@ucdavis.edu Scow Lab Soils and Biogeochemistry Graduate Group UC Davis



Support farmer's digestion and immunity

#### How microorganisms contribute to agriculture

http://images.google.com/imgres?imgurl=http://www.sare.org/ publications/explore/images/scenewide2.jpg

#### Indicators, metrics for soil biodiversity

| Indicator                                                                                                                                                                                                              | How measure                                                                                                                                                      | Why useful                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identity<br>Community<br>composition                                                                                                                                                                                   | DNA or RNA: clone<br>libraries, pyrosequencing,<br>DNA fingerprinting,<br>metagenomics                                                                           | Determines WHO is<br>there, what relationships<br>are there, what is<br>"potential" of these<br>organisms                                                                         |
| <u>Quantity</u><br>•Numbers<br>•Biomass                                                                                                                                                                                | Fumigation-extraction,<br>phospholipids, DNA,<br>microscope counts,                                                                                              | How many or how much?<br>How fast?                                                                                                                                                |
| <ul> <li>Functional traits</li> <li>Degrades chemicals,<br/>produces chemicals</li> <li>Associates with a<br/>symbiont</li> <li>Kills someone</li> <li>Competes with someone</li> <li>Helps build structure</li> </ul> | Substrate utilization,<br>formation of products<br>(e.g. CO2)<br>Presence/quantity of<br>functional genes<br>(Geochip);<br>RNA expression of<br>functional genes | What are <u>IMPACTS</u> of<br>microbes? What do they<br>eat, excrete, who do they<br>partner with<br>What is activity of genes<br>responsible for specific<br>microbial processes |

### Background: Microbial biodiversity

- Diversity degree of variation of life forms in an environment
- **Species diversity** refers to number of species in an environment and their relative abundance.
- Why do we care?
  - To achieve functional redundancy

### Functional Redundancy = Stability



#### Functional redundancy comes from diversity

Konopka 2009, What is microbial ecology? *ISME*, **3**, 1223–1230

#### Research questions

- Are soil microbial communities in unfarmed (fallow) soils more diverse than in soils that are actively farmed?
- Does growing crops without any fertilizer reduce soil microbial diversity?
- Are soil microbial communities more diverse in organic than conventionally managed crops?

# **Farming Systems Compared**

#### **RECEIVING INPUTS** (rotation with wheat)

- **Organic** tomato: irrigated, no synthetic pesticides, fertility from compost and cover crops
- Conventional tomato: irrigated, pesticides, fertility from ammonium sulfate

#### <u>NO INPUTS</u>

- Wheat: **no inputs**--not irrigated or fertilized
- Fallow: **uncropped** systems with weeds

# Biomass

Total microbial biomass is ~2X higher in organic than other systems.

Conv, no input and uncropped not significantly different in biomass.

#### **Species Diversity**

We frequently use **DNA sequencing** to measure microbial species diversity. Each "species" has unique DNA sequences that can be used to catalog numbers and relative abundance.

**Pyrosequencing** is recent technology for characterizing complex microbial communities.

Community Composition by System and Season



## RESULTS

- All systems have same **number** of species
- Systems differ in **composition** of their communities.
  - Organic and conventional systems more similar to one another than to no input and uncropped systems
- Most systems showed strong changes in communities in Spring versus Fall.

-Organic less so?

# Conclusions/discussion

- Organic and conventional not very different—why? How about commercial organic farms with greater crop diversity? How about commercial conventional farms with higher fertilizer/pesticide inputs?
- Seasonal variation is high in uncropped, no input systems and conventional but less so in organic. Organic has more resources to maintain and stabilize microbial communities?
- Do differences in community composition translate into
  - Differences in ability of these soils to perform key functions?
  - Differences in resistance and resilience to disturbances?

# Acknowledgements

- Scowlab <u>http://scowlab.lawr.ucdavis.edu/</u>:
  - Kate Scow
  - Mike Matiasek
  - Radomir Schmic
  - Inmyoung Park
  - Johnny Hsia
- Martin Burger
- Emma Torbert
- Israel Herrera
- Noah Fierer



1. It minifies fantastically! I can see whole people!