Enhancing soil quality and carbon sequestration through biochar soil amendments

Emma Suddick, Amanda Hodson and Johan Six

What is biochar?

Biochar is produced by pyrolysis, which is the thermal decomposition of organic materials (e.g. wood, nut shells, poultry litter) at high temperatures (> $400\,^{\circ}$ C) in the absence of oxygen. During the pyrolysis process, depending upon temperature, heat is also generated, which can be used to produce electricity, along with bio-oils that can be used as a fuel for tractors and other farm equipment. Biochar is therefore, not only a potential large and long-term sink of carbon when added to soils, but also reduces the CO_2 emissions associated with fossil fuel consumption.

How can it improve soil quality and enhance carbon sequestration? What are the benefits?

- Adding biochar to soil has the potential to sequester atmospheric carbon into soils by locking biomass carbon into the soil.
- Biochar added to soil can improve soil nutrient retention and improve nutrient availability to plants due to its high cation exchange capacity.
- Improvements to nutrient retention and remediation of soils can increase crop yields.
- Therefore, biochar can improve soil fertility and production capacity while maintaining high levels of soil C.
- Soils amended with high C:N plant materials generally have a greater incidence of fungal feeding nematodes, therefore the addition of biochar with high C:N ratio to soil could lead to a shift in decomposition to a more fungal based channel. Therefore, biochar has the potential to promote a more intact, healthy soil food web with more effective nutrient cycling, which in turn can result in a reduction in GHG emissions.

Our research

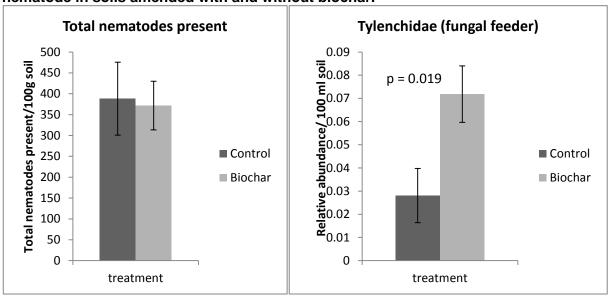
We are currently evaluating whether the addition of a high temperature (pyrolyzed at 950°C) walnut shell derived biochar has the ability to improve soil quality and soil biodiversity while simultaneously reducing greenhouse gas emissions (e.g. N₂O, CO₂) and improve crop yield.

Results

1. Soil quality changes and lettuce yield

The impact of biochar soil amendments resulted in an increase in soil C resulting in a higher C:N ratio. Furthermore biochar amended soils had a significantly (P = 0.014) greater retention of potassium compared to control at the end of a 1 year experiment in a lettuce cropping system. Lettuce yield was neither significantly positively nor negatively impacted following the addition of biochar to the soil.

Table 1: Initial and final soil quality properties following the amendment of high temperature


walnut shell biochar to soils growing lettuce after one year following amendment.

Treatment	Soil C (%)	Soil N (%)	C:N Ratio	PO ₄ -P (ppm)	K (ppm)	Lettuce Yield (g fresh wt)
Initial soils	1.6	0.1	13.3	133	970	-
Final Biochar soils	1.80	0.19	9.53	105	541	1080
Final Control soils	1.57	0.19	8.32	95	411	1101

2. Biological changes

- There was no significant difference in the total number of nematodes present in either soils amended with biochar or not.
- There was a significant difference in the fungal feeding species Tylenchidae between treatments where biochar treatments had the greatest relative abundance of this species.

Figure 1: Total number of nematodes present and relative abundance of a fungal feeding nematode in soils amended with and without biochar.

Conclusions/Future work

- Biochar additions to soil have the ability to retain nutrients and enhance C sequestration when they may otherwise be depleted in similar systems without the addition of biochar.
- Biochar has the ability to change the biodiversity of an agro-ecosystem without negatively impacting crop yield.
- More research is needed to understand the impact of original biomass material (feedstock) and pyrolysis conditions (i.e. high or low temperature production) upon soil physical, chemical and biological properties.