Preliminary Findings on Water and Energy Use of Alfalfa Production under Border Check and Sub-surface Drip Irrigation

D. Zaccaria, D. Putnam, K. Bali, I. Bisconer

Self-funded projects with UC ANR operational funds (2016-2018) and contributions from the Agriculture Sustainability Institute and TORO Irrigation

ALFALFA RESEARCH TRIAL on SDI @ RUSSELL RANCH - DAVIS

Area = ~ 8 acres

Established Jan 2016

5 Treatments

3 Replications

Groundwater supply

OBJECTIVES

Document comparative differences between Check Flood (CF) and SDI in:

- ✓ Actual Crop Evapotranspiration (ETa)
- ✓ Hay Yield (HY)
- √ Water Productivity (WP)
- ✓ Energy usage (EU) and Energy Productivity (EP)

Motivations & Potential Impact

- ✓ State-wide, alfalfa is grown on 0.8 to 1.0 Million acres each year (depending on local & international markets, and available water supply)
- ✓ Alfalfa is a critical feed-supply to the Dairy & Livestock industry, which generates 11 Billion \$/year (~ 20% of CA's agricultural revenue)
- ✓ Strong interest to Sub-surface Drip Irrigation by:
 - A) Growers to obtain higher land and water productivity
 - B) Water agencies and regulators to pursue water savings

CURRENT IRRIGATION PRACTICES IN CALIFORNIA

(>80%) (~16%) (< 2%)

- ✓ Surface irrigation methods (specifically check-flood) dominate in the Central Valley and Desert regions of California (>80% of the total California acreage)
- ✓ Sprinkler systems (center pivots, linear move, side rolls, etc.) dominate in the Intermountain region (16% of the total California acreage)
- ✓ Sub-surface Drip (SDI) is practiced on (20,000 acres or less than 2% of the total acreage).

MAIN DRIVERS FOR SHIFTING TO SDI IRRIGATION IN ALFALFA?

- #) Prospect of increased yield
- #) Higher land and water productivity
- #) More control on irrigation & nutrients
- √Timing & amounts
- ✓ Avoidance of deficits and stress
- ✓Excess & leach-outs

Better soil-water-air conditions

SPOON-FEEDING THE CROP
RATHER THAN WETTING &
DRYING =>> <u>UNCERTAINTIES</u>

RESEARCH QUESTIONS (CF vs. SDI)

- ✓ Actual Crop Evapotranspiration (ETa): Water Saving with SDI?
- ✓ Hay Yield and Water Productivity (WP) under CF vs. SDI
- ✓ Energy usage and Energy Productivity (EP) under CF vs. SDI
- ✓ What growers need to pursue higher Yields and WP with SDI?

Canopy development curves were obtained from infrared pictures followed by photo-interpretation to derive fractional canopy cover

Energy and GHG (CO₂) from groundwater pumping 1ST YEAR CF SDI 30-in SDI 40-in 32.8 33.6 32.6 ETa (ac-in/ac) YIELD (Ton/ac) 8.0 8.40 8.35 **ENERGY (Kwh)** 97.0 48.8 100.2 GHG (Ton-EqCO₂/ac) 0.034 0.070 0.068

Water Use and Yield

Surveyed growers reported:
A) 20-30% Water Saving; B) 10-30% Yield Increase

Productivity of Water, Energy and GHG emissions from pumping

Water Productivity (Ton/in) = Biomass produced (Tons) / ET (in.)

Energy Productivity (Ton/Kwh) = Biomass produced (Tons) / EU (Kwh)

GHG Productivity (Ton/Ton-EqCO₂) = Biomass prod. (Tons) / GHG (Ton-EqCO₂)

	1 ST YEAR	CF	SDI 30-in	SDI 40-in
	ETa (ac-in/ac)	32.8	33.6	32.6
	YIELD (Ton/ac)	8.0	8.40	8.35
	ENERGY (Kwh)	48.8	100.2	97.0
	GHG (Ton-EqCO ₂ /ac)	_0.034	0.070	0.068
	WP (Ton/in)	0.24	0.25	0.25
	EP (Ton/Kwh)	0.16	0.083	0.086
	GHG-P (Ton/Ton-EqCO ₂)	235.3	120	123

What is needed to pursue Yield and Water Productivity Gains?

With check-flood systems only 1 or 2 irrigations per cycle.

With SDI the more timely and precise water applications =>>key aspects for higher yield performance

Yield and Water Productivity gains are most likely related to:

- 1. Avoiding long wetting-drying cycles
- 2. Preventing water stress to plants during re-growth (sensitive growth stage)
- √ farm personnel more skilled in irrigation management
- ✓ ability for quick trouble-shooting and preventive maintenance
- ✓ advanced monitoring and control technologies deployed in the field